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SUMMARY 
This paper establishes an inversion formula for an integral transform of the Mellin type which is defined on a 
~uncated infinite interval 0 < a < r < ~ and which is associated with a radiation type boundary condition at 
r = a .  

1. Introduction 

There has been some some interest in the properties of two integral transforms which were 

proposed by the author [3] in 1963. These transforms, which are variations of the standard 

Mellin transform, are defined by the equations. 

FI(u) = fa** (rU'l -a2Ur-U- l)f(r)dr' (1) 

F2(u)= fa** (rU-I +aZUr-U-l)f(r)dr (2) 

where a > 0. Tweed [5]-[9] has shown how the above transforms can be used with effect in the 

solution of several dual and triple integral equations that arise in the theory of elasticity and 

convolution type formulas for the transforms have been developed by Harrington & Patel [ 1 ]. 

The transform (1) is useful in connection with boundary value problems involving the 

operator r2frr+ rf r when the quantity f(a) is prescribed, whereas the transform (2) is useful 

when the derivative f '(a) rather than the function valuer(a) itself is assigned. In some problems 

a radiation type boundary condition appears in which the quantity hf(a) + af'(a) occurs. A 

Mellin type transform associated with this boundary value has been proposed by Jain [2] who, 

in our notation, introduces the transform F(u) defined by the equation 

F(u) = f ?  [(u-h)r u-  1 + (u + h)a2Ur - u -  1 ]f(r)dr. (3) 

In this formula h is a constant which may be complex. 

Jain gives the following formula of inversion to be associated with (3); 
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1 f r -u F(u)du 
f ( r ) =  27ri u-h (4) 

L 

In this formula the path of integration L is a line parallel to the imaginary axis in the complex 
u-plane. The precise location of this line is not defined by Jain and will be determined later in 
this paper. The procedure adopted by Jain to derive the inversion formula (4) follows that used 
in the author's initial paper [3] where the transform (1) and the corresponding inversion for- 
mula were extracted from the solution of a boundary value problem formulated for a partial 
differential equation. This method generates the transforms (1) and (2) but is purely formal and 

does not constitute a proof of the corresponding formulas of inversion which can in fact be 
deduced from the standard Mellin inversion theorem. 

This paper provides a rigorous investigation of the inversion formula associated with the 

transform defined by (3). It will be shown that the formula (4) proposed by Jain can be 
interpreted correctly provided that the point h lies in a certain half plane Re(h) < X and the path 

L is placed in a manner which will be defined. Here X is a positive constant determined by the 
asymptotic behaviour of the function f(r)  asr~oo. Howeverif Re(h) >~ the formula (4) is in 

general incorrect no matter where L is located. In this event it will be shown that the proper 
inversion formula is given by the equation: 

1 r -u F(u)du 
f(r)=r-hF(h)+ ~ f u-h (5) 

L 

where L is the line Re(u) = c and Icl < X <Re(h). 
It will be shown in the following section of this paper that, for functions f(r) of the type 

considered, the transform F(u) is analytic in the strip IRe(u)l <X. If Re(h) <~, the formula (4) 
is correct provided that the path L is placed in this strip and to the right of the point h. Since 
the path L in (4) is placed to the right of the pole at u = h whereas that in (5) is placed to the 
left of this point, it is seen that (5) follows from (4), or vice versa, by moving L across the pole 
and taking into account the residue of the integrand at the pole. However, if equation (4) was 
rigorously established, (5) could not be deduced from (4) in this manner since, in general, the 
path L needs to be moved outside the domain of analyticity of F(u), a procedure that could not 
be justified by Cauchy's theorem. 

If F(u) happens to be an entire function, for example when f(r)  vanished or is O(e -~r) for 
sufficiently large r, where 3' > 0, then formula (4) is valid for all h provided that L is positioned 
to the right of the pole, 

2. The inversion formulas 

The inversion formulas in question together with a set of conditions sufficient to ensure their 
validity are stated in the theorem that follows. 
Theorem. Suppose that f(p) is continuous for p /> a > 0 and of bounded variation in the 
neighbourhood of the point p = r where r > a. Let pX-lf(p) e L (a, oo) where X > 0 and let F(u) 
be defined by equation (3) where h is a complex constant. Then 
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(i) if Re(h)<X,  f ( r ) =  ~ f r -UF(u)du  
2hi L u - h  (6) 

where L is the line (c- i  0% c + i oo) and max [-X, Re(h)] < c < X ;  

1 f r -u  F(u)du 
(ii) if Re(h) > X, f (r)  = r -hF(h )  + 27r---'iz L u - h  (7) 

where L is the line (c- i  0% c + i oo) and Icl < k. 

establish the above theorem the transform F(u) introduced by equation (3) will be To 
expressed in terms of the truncated Mellin transforms defined by the equations 

Fo(u ) = f ?  ru- 1 f(r)dr,  

Fo(-U) = L  ~ r - u -  1 f(r)dr.  

Then the equation (3) can be written as the equation 

F(u) = (u -h )Fo (u )  + (u +h)a 2u Fo(-U). 

(8) 

(9) 

(lO) 

Since r x -  If(r) e L(a, oo) it follows from equation (8) on writing r u -  l = r u -  x+x-1 that, on 

the line Re(u) = t, 

Ya [Fo(u)l < r t - x + h - 1  If(r)ldr <~ a t - x  r x-1  If(r)ldr 

provided that t ~< X. It follows that the integral (8) is absolutely and uniformly convergent in 
any domain of values of u in the half plane Re(u) <~ X so that Fo(u) is analytic in any such 
domain. In addition Fo(u) = O(a u) as u ~ ~, in this half plane. The function Fo(-U) is then 
analytic in the corresponding half plane Re(u) >~ -X  and is O(a -u )  as u -~ oo in this half plane. 
In particular Fo(u) and Fo(--u) are analytic in the common strip IRe(u)l <<- X and so, by (10), 
F(u) itself is analytic in this strip. 

Upon applying the Mellin inversion theorem [4, p. 46] to equation (8) it follows that 

/ 

1 f r-UFo(u)du= I f(r), r > a 
2hi L { O, 0 < r <a  ' 

(11) 

where L is the line Re(u) = c and Icl < X. 
The line L is now positioned in the strip IRe(u)l < X so that Icl < X, and equation (10) 

rearranged to give the formula 

F(u) = (u-h)Fo(u)  + (u-h)  a 2u Fo(-U) + 2h a 2u Fo(-U). 

If the preceding equation is multiplied by r -U(u-h)  - l and integrated along L we obtain the 
equation 
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f r-UF(u)au= f r-"Fo(u)du+ f (a2/r)UFo(-u)du+2h f r-ua=uF°(-u)au 
L u - h  L L L u - h  

(12) 

The existence of  the integral appearing on the left hand side of equation (12) follows from that 
of the three integrals on the right hand side, the values of which will now be determined. The 
value of the first integral appearing on the right hand side of(12) is, by (11), equal to 27r if(r). 

The second integral occurring on the right hand side of (12) can be shown to be equal to zero 

by the following method. If the variable u be replaced by -u in this integral it becomes equal to 

fL' (a2/r)-U Yo(u)au (13) 

where L' denotes the path Re(u) = -c .  Since Icl < ~ and (a2/r) <a it follows from the Mellin 
inversion formula (11) that the integral (13) is zero as required. 

The third integral occurring on the right hand side of (12) can be evaluated by means of the 
calculus of residues as follows. The function Fo ( -u )  is analytic in the halfplaneRe(u)> -~  and 

is O(a - u )  as u -~ oo in this half plane so that the integral in question can be evaluated by closing 
the contour on the right of L by means of a semicircle whose radius tends to infinity. On this 
semicircle the integral is O[u -~ (a/r) u ] which, since r > a, tends to zero sufficiently rapidly as u 

oo to ensure that the contribution from the semicircle vanishes in the limit as the radius tends 
to infinity. The value of  the integral then depends on whether the pole u = h lies to the left or 
to the right of L. 

If the given constant h is such that Re(h) > 2~ then L is positioned to the left of the pole and 
the value of the third integral appearing on the right hand side of(12) is  -2n ir -na  2h Fo(--h) 

which, by (10), is equal to -2zr ir -h  F(h). On collecting these results it follows that equation 
(12) becomes 

f r-"F(u)au 
L " ~  - 21rif(r) -- 2n i r -h F(h )  

where L is the line Re(u) = c and Icl <X <Re(h).  
However if h is such that Re(h) < ~ and L, which is necessarily positioned such that Icl < ?~, 

is chosen to ensure that Re(h) < c then the pole lies to the left of L and the corresponding 
value of the integral is zero. Equation (12) then shows that 

t"  r-U F(u) du 
J - 21rif(r) 
L u - h  

where L is the line Re(u) = c and max [-X, Re(h)] < c < ~. 

3. Application 

In applications it is advantageous to have at hand a formula for the transform of the group of 
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terms (r2frr + rfr ) that appears in the Laplace and other differential operators. For brevity we 
introduce the function ~O(u,r) defined by the equation 

~k(u,r) = (u-h)r  u + (u +h)a 2u r -u  (14) 

so that 

r 2 t~rr +r~ r -  u2~ = O. 

The transformF(u) can then be defined by the equation 

£" F ( u ) ;  qJ(u,r)f(r) --dr. (15) 
r 

the transform of the required group of terms is then given by the equation 

ff (r2frr + rfr ) ~ (u,r) d r  = u2F(u) _ 2uaU [hf(a) + af'(a)l. (16) 
r 

This formula applies for IRe(u)l < X and can be established by repeated integration by parts. 

4. A related transform 

If the relevant interval of interest is 0 ~< r <~ a we introduce the related transform H(u) defined 
by the equation 

f o --dr. (17) H(u)= ~(u,r)f(r) r 

In applying this transform it is assumed thatf(r) is continuous for 0 ~<r ~<a and thatr  "u'l f(r)  e 
L(0~) where/a > 0 so that H(u) is regular in the strip IRe(u)[ < #. By following a procedure 
similar to that adopted in Section 2 it can be shown that the inversion formulas to be associated 
with the transform H(u) are given by the following equations: 

1 f r-UH(u)du (18) 
(i) i fRe(h)<l~, f ( r ) = - r - h H ( h ) +  ~n i L u -h  

where L is the line ( c - i ~ , c + i ~ )  and max [-t~,Re(h)] < c < la; 

(ii) if Re(h) > la, 

I_L_ F r-U H(u) du 
f(r) = J (19) 

27ri z~ u-h  

where L is the line (c - i~ ,  c+ioo) and Icl < ~t. 
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For the transform H(u) it can be shown that the formula corresponding to (16) is given by the 

equation 

f :  (r2frr + rfr ) ~ (u,r) drr = u2H(u) + 2uaU [hf(a) + af'(a)] (20) 

where IRe(u)l < ta. 

Appendix 

In this appendix we consider the following pair of dual integral equations involving the trans- 
form H(u) of the kind introduced in equation (17): 

1 ( -  r -u  n(u)du 
J , - 0 ,  O~<r~<b, 

27ri L u-h  

1 f u r - U- lH( u ) c o tuk du  
~ gt (r)$ 

d 2rri L u-h  

(21) 

b ~< r ~< a. (22) 

These equations are typical of the type that arise when the Mellin type transforms are applied 

to the solution of mixed boundary value problems. When h = 0 the above equations reduce to 
those solved by Tweed in his paper [5]. The method adopted by Tweed can also be applied to 
solve (21), (22). 

In the formulation of (21), (22) it is assumed that k is a positive constant and that the path 
of integration is positioned to the left of the pole u = h. Then a comparison of(21) with (19) 

reveals that H(u) is the transform of a functionf(r) that vanishes for 0 ~< r ~< b so that (17) 
reduces to the equation 

n(u) = f ;  [(u-h)r u -  1 + (u + h)a2Ur - u -  1] f(r)dr. (23) 

This expression automatically satisfies the condition (21) and shows that H(u) is an entire 
function of the complex variable u. To proceed further it is first convenient to transform (23) 
by integration by parts. Sincef(b) = 0 this procedure leads to the equation 

H(u)= - 1 £2  [2haU + (u-h) ru _ (u + h)a2Ur_U] f ,  (r)dr. 
u 

This expression is now inserted into (22). After some manipulation, in which the resulting 
contour integral is evaluated by means of the calculus of residues, it is found that 

f ,  (p) - -  = - Xg, (r) 
p a'r a2"r _r ' rp ' r  p 

(24) 

where 7 = 1r/X, f l (P) = hf(p)+pf'(p) and gl(r) = hg(r) + rg' (r), where b ~< r ~< a. The 
equation (24) is precisely the same as that solved by Tweed who reduced the equation to one of 
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the Abel k ind  by suitable changes of  variable. For  details o f  the final solut ion of  this equa t ion  

we therefore refer to Tweed 's  paper. 
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